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Abstract— In this project our goal was to segment brain tissue in
axial FLAIR MRIs using machine learning. We were successfully
able to accomplish this by training a random forest of trees classifier
to determine with high accuracy and speed whether a pixel is part
of the brain tissue or not. The classifier was given the value of
the pixel, the location of the pixel, and the values of nearby pixels.
Using preprocessing we were able to ensure that the algorithm can
handle moderate contrast differences between images. Using a two
phased post processing approach we were able to attain better skull
stripping bit masks. Overall, we attained a very good mean Dice
score of 97.02. We hope to increase this in the future by using a
larger set of training data.

I. INTRODUCTION

Skull stripping refers to the process of isolating brain tissue
from other structures in a medical image of the brain. This usually
involves the removal tissue such as the dura and scalp from the
image. It is often done as a preprocessing step as it is improves
the speed and accuracy of many brain image analysis/processing
algorithms while also decreasing algorithm complexity [1].

Our goal was to segment the brain tissue in MR images with
reasonably high accuracy and speed. Since traditional techniques
require tuning of several numerical parameters depending on
the dataset to achieve the reasonable results, we used machine
learning to develop a more effective and easier to use tool.
Unlike most other skull stripping techniques we also removed
the ventricles. We focused on axial FLAIR MRIs of the brain.

A paper by Kleesiek et al had already applied a deep learning
architecture to this problem (attaining a mean Dice score of 95.19
for clinical data)[2] and so we decided to explore a different
approach. Our algorithm used each pixel’s location and value as
well as the values of neighboring pixels to determine whether the
pixel was part of brain tissue. We optimized multiple parameters
and applied various techniques to ensure that our tool was
flexible enough to work on different MR images regardless of
the noise/contrast differences in the images and would provide
the best results.

We manually skull stripped anonymized MRI data provided by
the University of California, Los Angeles to create our training
and testing data. The tool was written in Python and relies
on various Python libraries such as Google’s SciKit-Learn and
PyDicom.

II. METHODS AND CONSIDERATIONS

A. Data Collection

The University of California, Los Angeles provided us with
MRI data. In order to process this data to create our training and
testing data, first anonymized all images to remove all personally
identifiable information and then manually skull stripped the im-
ages using OsiriX. In OsiriX, we created ROIs for the ventricles
and the brain. We used a mixture of the threshold, confidence,
and neighborhood methods to creating ROIs and applied different
parameters to generate the best fitting ROIs for each feature. We
used OsiriX’s ”Set pixel values” feature to set the pixels inside the

ventricles and outside the brain to a value of 0 and set the pixels
in the middle of the ventricle and brain ROIs to 1000, giving
us the bit masks (which served as our ground truth). Note, we
chose to use OsiriX instead of other easier and more automated
methods to creating masking images since it gave us finer control
over generating the images. All images and masks were 16 bit
DICOM files, with heights of 256 pixels and varying widths (all
less than 400 pixels).

B. Feature Selection

There are three major aspects which were considered in
determining whether or not a pixel can be considered part of
the brain tissue:

1) Value of the Pixel: In general, we see in the FLAIR MRIs
that parts of the image which are not brain tissue are dark,
meaning they have lower pixel values. This means we can use
pixel values as a factor in predicting whether or not a pixel is
part of the brain.

2) Location of the Pixel: Pixels very far away from the
center of the MRIs and pixels in the very center (ventricles) are
unlikely to be part of the brains. We can use X and Y distances
from the center as a predictor. Note, we do not use the pixel’s
euclidean distance from the center because the brain is elongated
and not symmetric so just the distance is not a good predictor.
Furthermore, since the images have differing widths, just the
coordinates do not function as good predictors. A pixel with X
value of 5 may be part of the brain in an image with a very small
margin, but will be very unlikely to be part of the brain in an
image with a large margin. Using the distance from the center
helps us avoid this problem.

3) Value of Neighboring Pixels: Patterns among neighboring
pixels can help us determine whether the pixel is part of the
brain tissue. For example, the texture of the skull tissue or the
cerebrospinal fluid in the ventricles can suggest that the pixel is
not part of brain, the presence of two edges in the neighboring
pixel can suggest that the pixel is between the brain and the
skull, etc. An important aspect of this is the number of pixels
we consider. After testing several different values, we found
that analyzing the surrounding 11x11 grid of pixels gave us the
best results. Very small grid sizes resulted in large number of
false positives while larger grid sizes gave us results which were
difficult to generalize to non-training images.

C. Estimator Selection

Our goal was to predict whether or not each pixel was part
of brain tissue. This meant that we would be using either
classification or clustering estimators. Since we wanted to use
our labeled data, classification estimators made the most sense.
Furthermore, we were expecting large amounts of data points
and so we wanted something scalable. This lead us to using a
gradient decent classifier, however our results were terrible and
we achieved an 45% accuracy among our training data. It was



clear that this would not work. Thus, we switched to a Support
Vector Machine based classifier. Although it would be a little less
scalable, it would provide us with better results . Although this
improved our training score to 60%, this was still unacceptable.

From here we tried the KNeighbors Classifier. This classifier
gave us fantastic results with about 98+% accuracy, however as
the training data grew, the classifier’s run time grew exponentially
(going above 1+ minute per image to train, 4 minutes per image
to process, and giving us a 700+MB classifier ”pickle” - all with
8 threads running). This classifier was not scalable.

Finally, we used ensemble classifiers which provided us with
scalable yet good results. The forests of randomized trees clas-
sifier allowed us to attain results similar to the KNeighbors
classifier (97+% accuracy on the training data) but was much
faster ( 10 seconds per image to train, 30 seconds per image to
process, 15 MB classifier).

D. Generalizing For MRI Variation

We wanted to ensure that our trained model would be robust
against mild variation between MRIs. We considered the follow-
ing attributes of MRIs:

1) Differences in contrast: We noticed that some MRIs were
brighter than others. Some had backgrounds which were almost
gray. This was resulting in a model that was not being trained
correctly and was unable to tackle variations in MRIs. We were
able solve this problem by preprocessing all the images. We
centered all images to the mean and scaled them to unit variance
before training on them or predicting their skull stripped result.

2) Differences in size: Since our images had varying widths,
we were unable to just use the X and Y positions of the pixels
and instead used the distance of the pixels from the center. We
also considered using ratio’s of the X and Y positions versus
the width and the heights, but we quickly saw that this did not
make sense since the images were not scaled differently, only the
margins were different.

3) Differences in noise: We also wanted to account for noise in
the images. We did this by adding a preprocessing step of slightly
blurring the images. Unfortunately, this resulted in worse results
and so it was undone. We also tried downscaling images to half
their size, processing them, and then upscaling them again. We
hoped that this would allow the model to consider a larger region
of the image for each pixel, however it only resulted in lower
resolution and less accurate results. Although we were unable to
find an effective way to fight noise differences between images,
it was not a big concern as it did not have a significant impact
on our overall results.

E. Post Processing and Optimizations

Although our results were quite good (dice score of 95.75),
we wanted to see how we could postprocess the bit masks to get
even better results. We tried two approaches:

1) Neighbor Analysis: We loop through each pixel in the
image and if more than 84% (tested out different values) of the
pixels in the 5x5 grid around it are of a specific type (0 or 1), we
change its type to match the majority. This would allow us to fill
in small holes in the image. We also tried doing multiple passes
of this but that resulted in too many false positives. Neighbor
Analysis yielded a slightly increased mean dice score of 95.87.

2) Two Phased Training: We have two phases. The first phase
is the same as our original apporach and trains the algorithm
normally. This allows it to create the skull stripping bit masks
from MRIs. The second phase uses a different training set to
generate bit masks using the learning from phase 1 and then
train the same algorithm to take these bit masks and make them
more like the ground truth. This two phased approach gave us a
better results with a mean Dice score of 97.02.

When we combined both approaches we attained a mean Dice
score of 97.01. It was clear that the two-phased approach was
the way to go.

We also enabled multiprocessing in our training and batch skull
stripping functions for faster results. We gained a linear decrease
in time spent training/processing depending on the number of
cores the machine has.

III. EVALUATION / CONCLUSION / RESULTS

Overall, our results were very good. We were able to success-
fully use machine learning to skull strip axial MRIs of the brain.
To evaluate our the performance of our solution, we computed the
Dice score of each test image and averaged them. We achieved
a mean Dice score of 97.02 using the two phased postprocessing
approach. To put this into perspective, the result attained by the
cutting edge solution developed by Kleesiek et al has a mean
Dice score of 95.19 for clinical data. However, it is important
to note that our testing set was very small (only 5 images) and
so the uncertainty of this score is quite high. This was because
the data we collected had a lot of tilted and shaken MRIs, some
had large variations in sizes (which we avoided), and many were
not coregistered. The final set of usable data was quite small.
Our training set was also small and contained 13 images which
were split into 2 sets for the two phased postprocessing. As we
have seen in testing our program, more data usually improves
our results and so we can expect additional data to increase our
mean Dice score.

IV. DISCUSSION AND FUTURE WORK

In the process of developing this tool we learned a lot about
different classifiers and machine learning techniques. Although
we are happy with our results, we believe that there is still lots
of room for improvement. Since our data set was quite limited,
we believe that we should collect more data to further improve
our results. This extra data will also allow us to ensure that our
algorithm works for data sets with higher ventricle and skull size
variability. Furthermore, we should look into a more customized
machine learning approach for postprocessing our output bit mask
instead of using the same algorithm we are using to train the skull
stripping.
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Fig. 1. Left: Program Input, Right: Program Output


